一、碳酸盐岩地层的岩性比率预测方法(论文文献综述)
付光明[1](2021)在《基于机器学习的三维成矿预测研究 ——以赣东北朱溪钨矿为例》文中研究指明传统的面积性成矿预测往往需要大量的已知矿点,且无法给出深部信息,制约了其在覆盖区和已知矿点数不足区的应用效果。随着资源需求和勘探难度的加大,更多单一的大型矿床深边部需开展三维成矿预测,而三维地质建模和三维地球物理反演技术的日渐成熟可为三维成矿预测提供多源的数据需求,机器学习非凡的数据挖掘能力能给三维成矿预测提供强大的技术支撑,因此,急需借助各种空间分析方法开展基于机器学习的三维成矿预测研究和应用实践验证。朱溪钨矿是当今世界上已发现的最大钨矿床,钨矿是战略性关键矿产,为了发现更多的钨矿床,保障资源安全,开展其深边部及外围的三维成矿预测很有必要。本文在该区已完成的六图幅三维地质建模和重、磁、电、震数据三维反演基础上,将剩余密度、磁化率、电阻率、P波速度和岩性5组特征采用同一网格剖分,分为包含岩性在内的5组特征的数据集1和只包含4组纯物理属性特征的数据集2。然后根据已知含矿体和不含矿体的空间位置提取了对应样本的特征属性,将已知样本拆分为训练集(75%)和测试集(25%),分别利用K近邻(KNN)、BP神经网络(BPNN)、支持向量机(SVM)和随机森林(RF)四种机器学习算法对训练集样本进行训练,并采用网格搜索法和10折交叉验证求取均方误差来确定最佳参数组合,进而对全区三维数据开展了分类和回归预测工作,获得了多组三维成矿预测模型。分类时通过混淆矩阵计算各模型的准确性,回归时通过接受者操作特征(ROC)曲线的制作来反映训练模型的优劣,鉴于ROC曲线不是评判模型的唯一标准,为了避免模型对训练样本产生过拟合,客观地反映模型在预测时的性能,在对各个模型阶段值统计后,对BPNN、SVM和RF模型进行了捕获效率图的制作,得出了无论数据集1还是数据集2上模型性能优劣依次为RF、SVM和BPNN模型的结论。为了更好的提升模型预测性能,接着将四种算法预测的模型进行了融合,使得预测结果有了较大的改善,缩小了单一算法对预测结果可能带来的偏差。考虑到不同算法针对不同的实际模型和实际数据表现的性能不一,随后提出了一种加权融合法,分类时,根据测试集的准确率和全局预测为1的占比两种因素之间的比例来确定各算法的权重;回归时,根据全局预测的捕获效率来确定各算法的权重,该方法一定程度上克服了模型在训练已知样本时产生的过拟合,比仅靠相等权重下融合的模型更加稳健。然后将形态较为一致的三组融合模型合并为一个更加光滑整洁的模型,用来进行远景区评价和解释,据此规划了六个一级远景区,分别为朱溪(T1)、横路(T2)、塔前(T3)、临港(T4)、涌山(T5)、珍珠山(T6)区域。根据预测结果垂直构造切片探讨了成矿与推覆构造之间的必然联系,根据不同深度的切片反映成矿远景区在垂向上的变化。三维预测结果与前人二维预测结果在地表的投影位置较为一致证实了本次成矿预测的可行性,同时三维预测的两个新的远景区可能是下一步找矿的方向。一级远景区与地表断裂对应的关系图突出了断裂的控矿作用,与花岗岩的接触关系图说明成矿热源来自于深部的花岗岩。一级远景区物理属性的分析客观地反映了本次成矿预测同样符合相似类比的理论基础,地表的重磁响应突出了异常梯级带区应该是关注的重点。结果表明,这种在完成多源地球物理三维反演和三维地质建模基础上,借助机器学习进行三维成矿预测的方法,有望解决当前成矿预测难于向三维推进的障碍,并将极大地提高勘探效益和降低施钻风险。
张海涛[2](2021)在《淮南煤田奥陶系古岩溶成因机理及预测研究》文中提出华北煤田奥陶系碳酸盐岩内古岩溶十分发育,成为岩溶水储存和运移的主要场所与通道。目前,矿山对奥陶系岩溶研究多集中于含水层富水性和渗透性,缺乏对古岩溶发育特征及其成因机理研究,致使矿山开采过程中岩溶水患预测不准、岩溶水害时有发生。淮南煤田位于华北板块东南缘,为一 NWW展布的对冲式断褶构造带,地质及水文地质条件极为复杂。随着煤田逐渐向深部开采,奥陶系岩溶水害威胁程度日趋严重,古岩溶研究工作已迫在眉睫。因此,系统开展淮南煤田奥陶系古岩溶发育特征、分布规律及成因机理研究,不仅对淮南煤田及类似水文地质条件矿区的深部煤炭资源开采过程中岩溶水害防治具有重要的指导作用,而且对进一步认识华北地区奥陶系古岩溶的形成与演化也具有深远意义。本文以岩溶地质学、水文地质学、古地理学、沉积学、构造地质学和岩石力学等多学科交叉理论为指导,采用野外调查、岩芯观测、薄片鉴定、室内实(试)验、数值模拟、模型预测、地质统计分析等方法与手段,对淮南煤田奥陶系古岩溶发育特征、演化过程及其成因机理等方面开展了系统深入研究,并对古岩溶发育程度进行了预测。取得主要成果和认识如下:(1)系统研究了淮南煤田奥陶系古岩溶的发育特征、充填特征和分布特征:①淮南煤田奥陶系碳酸盐岩中主要发育有溶孔、裂缝、溶洞和岩溶陷落柱等四种古岩溶,且以裂缝和溶洞为主;②裂缝和大溶洞多为充填型,半充填和未充填型次之,小溶洞多为半充填型,其次是未充填型,全充填型最少;③裂缝、大溶洞和岩溶陷落柱主要沿着断层带分布,在垂向上具有明显的分带性。(2)确定了淮南煤田奥陶系古岩溶的形成期次、形成时间、形成环境和侵蚀性流体来源:①沉积岩溶形成于早奥陶世到中奥陶世,主要发生在海平面附近,是海水和大气降水共同溶蚀作用的结果;②风化壳岩溶形成于晚奥陶世到早石炭世,主要与大气降水的长期淋滤作用有关,在奥陶系地层顶部形成了风化壳孔缝洞系统,且垂向上存在明显的“四带”结构,即地表残积带、垂直渗流带、水平潜流带和深部缓流带;③压释水岩溶形成于中石炭世至早三叠世,发生在地下中高温、埋藏封闭环境中,其形成主要与上覆石炭-二叠系地层在成岩压实过程中释放出有机酸和酸性压释水有关;④热液岩溶发生在晚三叠世至晚白垩世期间的地下高温、深埋环境中,其形成主要与地下深部的岩浆热液活动有关;⑤混合岩溶形成于早白垩世至晚古近纪,发生在潘集和陈桥背斜的碳酸盐岩露头区的断裂带周围,其形成主要是大气淡水与深部地层水以及热液流体的混合溶蚀作用有关。(3)系统阐述了碳酸盐岩岩性、岩层结构、侵蚀性流体、断裂构造、古地貌与古水文、岩浆活动、以及岩溶作用时间等因素对淮南煤田奥陶系古岩溶发育的控制作用:①溶蚀试验表明,淮南煤田奥陶系碳酸盐岩溶蚀能力由强到弱依次为灰岩>角砾灰岩>白云质灰岩>泥质灰岩>灰质白云岩>白云岩;②水文地球化学模拟发现,侵蚀性流体溶蚀能力主要受流体温度、酸性气体成分(包括CO2和H2S等)和压力、以及混合流体比例等控制;③多期构造运动数值模拟结果表明,早燕山期和晚燕山期的断裂构造对淮南煤田奥陶系古岩溶发育起着重要作用,研究区中部地区是拉张裂缝和古岩溶发育的最佳位置;④奥陶系风化壳古地貌与古水文控制着奥陶系古岩溶的垂向发育特征,基岩风化面古地貌与古水文控制着奥陶系含水层的富水性和渗透性;⑤岩浆活动和岩溶作用时间对淮南煤田奥陶系古岩溶的形成和演化也起着重要作用。(4)以淮南煤田岩溶陷落柱为研究对象,推导出圆台形顶板塌陷判据公式,模拟分析了岩溶陷落柱基底溶洞和顶板塌陷的形成与演化过程,揭示了岩溶陷落柱形成机理。淮南煤田岩溶陷落柱的形成主要与晚三叠世至古近纪的热液溶蚀和混合溶蚀有关,印支期和早、晚燕山期形成的断裂构造、岩浆活动和碳酸盐岩半暴露区对淮南煤田岩溶陷落柱的形成与演化起到了关键作用。(5)建立了 GIS-AHP耦合模型,预测了淮南煤田奥陶系古岩溶发育程度及其平面分布:淮南煤田奥陶系古岩溶发育程度整体为中等~极强,仅西北、西南和东北部分地区奥陶系古岩溶发育程度表现为中等偏弱~弱,古岩溶发育强~极强区域主要集中在中部矿区。通过对比预测结果和区内岩溶陷落柱、奥陶系含水层突(涌)水点实际揭露位置,验证了预测模型、评价指标和指标权重的正确性,为深部岩溶水害防治工作提供了重要参考依据。图[106]表[36]参[327]
周鑫[3](2021)在《云南省铅锌矿产资源保障程度与勘查布局研究》文中提出矿产资源是国民经济发展的重要材料,云南省是有色金属大省,其中的铅锌矿占比很大,随着社会工农业不断的发展,铅锌矿需求越来越大,供需矛盾日益突出。因此,为缓解经济发展的瓶颈问题,需要对云南省铅锌矿产资源保障程度加强研究,同时对成矿条件好的地区进行勘查布局。云南省铅锌矿资源规模庞大,大致分布于滇东北的巧家、鲁甸、彝良、会泽,滇西的兰坪、腾冲、保山一带,滇西南的澜沧、芦子园一带,滇东南的文山、蒙自等地。当前云南地区已发现的铅锌矿资源储量中的80%都集中于以上几个矿产地。本论文系统的资料收集,较好地阐述了云南省主要铅锌矿区成矿地质背景、成矿条件、成矿规律及区域成矿要素、成矿模式等,同时,总结了云南省铅锌矿矿产资源分布情况,并对铅锌资源量进行了统计分析。划分了云南省铅锌矿产资源类型,主要有滇东北会泽及毛坪碳酸盐岩型铅锌矿、滇西兰坪金顶砂砾岩型铅锌矿、滇西南澜沧海相火山岩型铅锌矿、芦子园矽卡岩型铅锌矿、滇东南都龙矽卡岩型铅锌矿,以及其他类型的铅锌矿等。云南省铅锌资源前景相对较好,铅矿静态保障年限小于5年,动态保障程度为10-20年,锌矿静态保障年限小于5年,动态保障程度为5-15年。云南省主要的铅锌矿产勘查布局地段是:(1)滇东北会泽及毛坪碳酸盐岩型铅锌矿及周缘、(2)滇西兰坪金顶砂砾岩型铅锌矿及周缘、(3)滇西腾冲一带矽卡岩型铅锌矿、(4)滇西保山及周缘矽卡岩、碳酸盐岩型铅锌矿、(5)滇西南芦子园-班老一带与岩浆作用有关的铅锌矿床、(6)滇西南澜沧海相火山岩型铅锌矿及周缘、(7)滇东南都龙矽卡岩型铅锌矿及周缘。对云南省铅锌矿产资源勘查布局具有一定的指导意义。
汪文洋[4](2020)在《叠合盆地深层碳酸盐岩储层孔渗演化及油藏赋存下限》文中研究表明中国油气短缺促使油气勘探不断向深层拓展,塔里木每年90%以上新增储量来自平均埋深超6000 m深层,已经发现的油气藏平均深度超过6043 m,在深层碳酸盐岩地层钻探了中国最深探井和发现了埋深最深油藏,分别超过8882 m和8408 m。国内外学者对于碎屑岩油气赋存下限研究比较深入,碳酸盐岩油气藏赋存下限研究相对薄弱。塔里木深层碳酸盐岩油气勘探实践显示,即便大于8000 m的探井仍然见到有较好的储层和较好的液态烃油藏,当物性很低时又会全部钻遇干层。碳酸盐岩油藏是否存在赋存下限?假如存在,其临界条件是什么?如何表征?成因机理是什么?这些问题困扰着石油勘探家们。在我国大力提升国内油气勘探开发力度并不断向盆地深层拓展时,解决这些问题对于预测碳酸盐岩深层石油有利勘探领域,科学指引深层石油钻探具有重要意义。塔里木盆地是中国特征明显的叠合盆地,深层油气勘探走在世界前列,油气勘探主要为碳酸盐岩储层,因此,本文以塔里木盆地为例来展开深入研究。本文收集到了 IHS(IHS Markit,2020)数据库包括全球6373个碳酸盐岩储层、俄罗斯Volga-Urals盆地2778个碳酸盐岩储层、中国西部叠合盆地四川盆地、塔里木盆地5708个深层碳酸盐岩储层钻探资料。选取355块碳酸盐岩储层岩心做了压汞实验、600份烃源岩样品做了岩石热解实验。综合采用地质分析、统计分析、实验分析以及数值模拟来研究塔里木盆地深层碳酸盐储层孔渗演化特征及其油藏赋存下限。论文主要取得了以下三方面的认识:第一,根据IHS(IHS Markit,2020)资料对比分析并总结了国内外碳酸盐岩储层孔渗特征。本文分析了世界碳酸盐岩盆地的储层孔渗资料,发现其具有如下特征:整体上,随着储层的埋藏深度加大,其孔隙度和渗透率值变小。储层的孔隙度、渗透率值(P90、P50、P10和Max)均表现出相似的随着埋深增大而减小的趋势,显示碳酸盐岩储层也存在油气赋存的下限。国内外碳酸盐岩储层对比结果显示,国外的碳酸盐岩储层孔隙度和渗透率值比较大,高孔和高渗储层具有比较好对应关系,而中国叠合盆地碳酸盐岩储层整体致密,储层的孔隙度和渗透率值比较小,储层孔隙度和渗透率表现出较差的相关性。第二,建立了针对中国叠合盆地碳酸盐岩储层特殊性的数值表征方法并提出了塔里木盆地塔中地区下奥陶统碳酸盐岩储层油藏赋存下限临界条件。本文建立了碳酸盐岩储层物理特性随埋深变化的数学模型,并通过Matlab软件模拟了本论文的研究区塔中地区下奥陶统碳酸盐岩储层孔隙度和密度随埋深变化规律。结果显示,下奥陶统碳酸盐岩储层的孔隙度随埋深增大时其值变小,其密度随埋深增大时变大。数值模拟的结果与实际测量的储层孔隙度及密度资料比较吻合。碳酸盐岩储层物性地质影响因素主要包括储层埋深、储层温度、储层形成的地质年代、储层所经历的构造旋回次数以及均质性等五个。当储层埋深越大、经历的构造旋回次数越多、地层年代越老、所处含油气盆地的地温梯度越高、均质性越好,储层的孔隙度值越小。综合含油层比例法、最小流动孔喉半径法、钻探结果判断法等,确定了塔里木盆地塔中地区下奥陶统碳酸盐岩储层石油赋存下限临界条件:孔隙度为1.8%,渗透率为0.07 mD,孔喉半径为0.01 μm。第三,探讨了碳酸盐储层油藏赋存下限成因机理。碳酸盐储层油藏赋存下限成因机理主要有两方面:储层内外毛细管力差随埋深增大而减小导致石油成藏过程结束;储层之外油气来源随埋深增大而枯竭导致石油成藏过程结束,成藏过程的结束代表着油藏赋存下限的出现。据此,确定了塔里木盆地塔中地区下奥陶统深层碳酸盐岩油藏赋存下限深度为9000 m~9200 m。油藏赋存下限临界孔隙度和深度下限具有相关性,与9000 m深度相对应。地质年代、构造旋回次数、地层温度以及均质性等四个地质因素影响盆地中油藏赋存下限深度的变化,当储层经历的构造旋回次数越多、年代越老、所处盆地地温梯度越高、储层均质性越好,油藏赋存下限深度越浅,反之越深。当前塔里木盆地塔中地区下奥陶统碳酸盐岩储层最大埋深不超过8000 m,说明当前在这套地层中开展深层碳酸盐岩油藏勘探是可行的,也是有前景的。
耿国帅[5](2020)在《青海东昆仑成矿带东段地球化学数据处理方法及找矿靶区圈定》文中进行了进一步梳理东昆仑成矿带东段处于青海省中部,与其周边地区共同构成青藏高原北部的重要地质单元,并以其丰富的金、铜、铁、多金属矿产资源,成为国内重要的矿产资源基地之一。目前该地区基本实现了 1:50万、1:20万或1:25万化探数据覆盖,前人基于这些数据,采用传统方法圈定大量的化探综合异常,取得了较好的效果。但仍然存在一些问题。论文以地球化学数据处理为主,把成分数据的处理方法和稳健统计分析的方法应用于数据处理中,充分挖掘地球化学数据的含量信息、空间信息与内部结构信息,综合地球化学各方面特征、应用层次分析法的思路,统计各网格单元的综合信息,从而圈定找矿靶区,取得了如下的成果:1)根据该区矿床产出的地质背景,结合研究区矿床类型划分,把该区的矿床类型分为以基性岩有关的成矿组合(SEDEX型、VHMS型和沉积变质型),与中酸性岩有关的成矿组合(矽卡岩型、斑岩型和热液脉型)和热液型金矿成矿组合(蚀变岩型和石英脉型)三种组合八种类型。2)提出并应用中值和几何平均值的差与变异常系数图,分析了昆北、昆中、昆南和北巴四个子区较有潜力的成矿元素。指出昆北W、Bi、Pb、Cr、As、Ag等,昆中 Hg、Au、Sb、Mo、Bi、Ag、Sn、W、As 等;昆南 Hg、Sb、Bi、Ni、Au、Cr、Mo、As、Cu、Ag;北巴Hg、Au、Sb、As、W等为该区较有潜力的成矿元素。3)采用两种方法圈定单元素异常,①利用ILR转换后造岩元素的稳健因子分析,进行地球化学分区,对元素含量进行分区标准化,从而圈定各元素异常。②提出利用改进的Aitchison距离方法来圈定单元素异常,从两种方法圈定的效果看,与矿床点的对应关系都较好,但相对而言,Aitchison距离由于考虑了与其它元素的关系,且消除了成分数据的闭合效应,圈定的异常更好。4)利用成矿元素的主成分分析,分别提取了以基性岩成矿、与中酸性岩成矿和与金矿成矿有关的主成分异常。利用主成分分析结果和矿床特征元素,选择Cu、Co、Cr、Ni、V、Zn;Ag、Cd、Pb、Mo、Sn;Au、As、Sb 和 Au、Bi、W四种元素组合,进行稳健马氏距离计算,并圈定马氏距离异常。5)综合分析了 Au、Cu、Co、Pb等元素含量在E、SE、S、SW四个方位的空间变化情况,总体上,元素NS向的空间变化率好于EW向的空间变化率,与区内矿床点的走向一致。对比Au、Cu两元素含量变化等值线图和空间变化率等值线图,认为元素的含量空间变化率等值线图比含量等值线图更具找矿意义。6)综合各类地球化学信息,利用层次分析法的思路,计算各网格单元的成矿信息量,根据信息量,圈定了三类靶区共32处,其中与基性岩成矿有关找矿靶区10处;与酸性岩成矿有关的找矿靶区10处;与热液型金矿有关的找矿靶区12处。在此基础上,圈定10处成矿远景区。在靶区验证中,热液型金矿找矿靶区内发现金、锑矿脉,在与酸性岩成矿有关的找矿靶区内发现了钨的矿化线索。
闫丽丽[6](2020)在《嘉陵江流域(广元段)地质地貌特征与土地利用演变研究》文中指出土地利用及其时空变化是人类与自然界相互作用的反映,是全球环境变化研究的热点领域。地质地貌是所有土地发生发展的基础,岩性、构造、地貌形态对土地利用具有影响和制约作用,研究地质地貌特征和规律,对提高土地资源的利用具有重要指导意义。目前,关于流域地貌发育阶段与地质地貌特征关系研究多停留在定性描述层面,关于流域地质地貌条件对土地利用变化制约作用的定量研究方法还未见报道。本文以嘉陵江流域(广元段)为研究区,以第四纪地质和地貌学原理为指导,结合流域生态学、地统计学和应用地质学等学科理论和方法,采用遥感技术、地理信息技术,并在野外实地调查、掌握基础地质资料和前人研究成果的基础上,开展流域地质地貌条件对土地利用变化制约作用的定量化研究。采用面积—高程积分模型划分流域地貌发育阶段,并分析流域地貌发育与地质、岩性、地貌和水系等特征参数的关系;从多维度(时间和空间)分析研究区1990~2014年的土地利用格局演变过程与规律,并选取坡度、岩性、土壤等9个因子,采用Logistic回归分析方法探究土地利用结构变化的影响因素,在系统分析的基础上,结合GIS空间分析技术预测未来土地利用的变化概率,为研究区土地资源的合理利用提供科学依据。主要结论如下:(1)以嘉陵江流域(广元段)为研究区,采用面积—高程积分模型(HI值)将研究区划分为老年期、壮年(偏老期)和壮年期三个发育阶段;面积—高程曲线呈S形,符合流域壮年期曲线特征,是地貌发育的均衡阶段。面积—高程积分具有面积和空间依赖性,当面积阈值大于24km2时划分次集水盆地,适合于开展研究区流域地貌发育的定量化分析。(2)通过分析流域地貌发育阶段与地质年代、岩性、水系和地貌等特征参数的关系发现:白垩系地层分布面积由壮年期向老年期逐渐减少,老年期未见白垩系地层分布。老年期(HI值为0~0.35)主要分布有侏罗系、第四系和志留系地层,其他地貌发育阶段则分布较少;就地貌参数来看,老年期海拔、地表切割深度值较其他两个发育阶段(壮年(偏老)期和壮年期)较低,坡度分布相对均衡,表明这一时期流域侵蚀放缓,地形基本稳定,开始向中低山或丘陵发育,坡度缓和。(3)从流域地貌发育和土地利用变化规律的分析来看,嘉陵江流域(广元段)土地利用类型以林地和耕地为主,1990~2014年耕地和林地主要转化为建设用地,建设用地向水域、耕地和林地转化的过程最为显着。流域地貌发育不同阶段影响土地利用变化的面积、速率、强度和综合动态度等特征,在一定程度上制约着土地利用转化的空间格局,但土地利用的变化方向与整体趋势是一致的。在此基础上,选取1990~2014年期间林地和耕地变化斑块,分析流域地貌发育不同阶段地质地貌特征和土地变化空间分布关系,其结果发现地貌发育不同阶段土地变化的面积比例有所差异,岩性对土地变化的空间分布特征影响较为明显,而高程、坡度、地表切割深度等地貌参数决定了土地变化空间分布主要区域范围。(4)利用1990、2000和2014年嘉陵江流域(广元段)土地利用、数字高程模型(DEM)、土壤、地层岩性等数据,构建基于Logistic回归模型的土地利用变化空间预测模型,结果表明:岩性、坡度、高程等因子是影响土地利用变化的主要因素。结合GIS空间分析技术和空间模型预测未来土地利用的变化概率,并采用ROC曲线和逐点对比方法检验模拟结果的精度,发现该模型对林地和耕地变化的预测效果较好,在近似的条件下,地质地貌因子对土地利用类型变化具有较强的影响,该模型可以有效地预测未来一定时期内土地利用转化概率的空间分布情况。(5)在嘉陵江流域(广元段)地貌发育阶段划分的基础上,采用GIS空间分析技术叠加土地利用空间概率模拟图,结果发现流域地貌发育不同阶段能反映一定区域内的地质地貌特征,制约土地利用空间拓展格局。如流域地貌发育老年期的林地转化概率高,其原因与老年期高程、岩性、坡度等特征参数相关,与地质地貌条件是土地利用变化的影响因素相一致。通过这种定量方法快速的划分研究区的地质地貌特征,能够为土地资源的合理利用和空间格局优化提供参考和依据。
台宁宁[7](2020)在《云南建水县挣财洞铅锌矿区岩溶发育特征及1800m中段涌水量预测》文中进行了进一步梳理云南矿产资源丰富,岩溶发育和矿床充水是采矿工程中常见的问题,正确评估矿井巷道的涌水量对于降低开采成本和确保矿山的安全生产具有重要意义。云南建水县挣财洞铅锌矿床发育多层岩溶,碳酸盐岩地层分布广泛,矿区构造发育,水文地质条件复杂,生产开采活动受地下水影响较大。因此,矿井水文地质条件的合理研究对矿山的安全生产有极为重要的作用。本次工作的目的是要找出矿床的岩溶发育特征,划分岩溶发育带,分析采矿巷道的充水条件,并确定水文地质参数,最后进行矿坑涌水量预测。本次工作取得的主要认识和结论如下:1、研究区属于中山中浅层构造侵蚀地貌。出露地层主要为个旧组碳酸盐岩,岩性为白云岩、石灰岩、泥质灰岩。矿床含水层类型为直接-间接充水岩溶裂隙含水层。2、研究区内岩溶发育,依据矿区钻孔资料及本次抽水试验资料,将矿区含水层个旧组划分到亚段,并对岩溶发育带进行划分,个旧组主要为4条岩溶发育带,其中又将含(隔)水层划分为13段。3、通过岩溶洼地(落水洞)发育情况、井下钻孔裂隙发育进行数值回归分析及抽水试验降落漏斗确定渗透张量,三种方法得出的结论基本一致。当裂隙数据足够多时,可用裂隙数据计算出的渗透系数K值代替抽(注)水试验计算的K值。4、通过钻孔分层抽水试验,对矿区多层岩溶含水层矿床分层观测,记录观测水位变化,对模型进行验证,绝对误差在0.5~1.5m范围内,实际观测水位值与模型计算水位值拟合程度较好,所建的数值模型可用于涌水量预测。对比验证水均衡法、大井法和数值法等三种计算方法,证明在本次研究中应用数值法计算矿坑涌水量更加准确。应用GMS软件建立合理、准确的地下水流模型,最终模拟预测未来矿山开采至1800m中段的矿坑涌水量为23931.37m3/d。
付宇[8](2019)在《城市岩溶空间分布规律及塌陷风险评价研究 ——以深圳某区为例》文中认为深圳是中国第一个全部城镇化的城市,也是我国岩溶分布的主要地区。目前探查出的可溶岩面积约占城区面积的10.8%,且多为覆盖型岩溶,埋藏于第四系地层之下,必须借助于勘探手段,才能查明岩溶的发育程度或分布情况。如何准确、经济的确定城市地下岩溶性质及位置规模等特征,是当前城市岩溶探测中的一大难题,也是开展城市岩溶研究工作的一个重要基础。深圳地区早期曾发生过20多次岩溶塌陷,分布在全市各区覆盖层较薄区域,造成了不同程度的人畜伤亡、居民房屋倒塌、工程项目停顿等,损失巨大。目前深圳已被划为粤港澳大湾区规划的四大中心城市之一,发展速度快,经济总量大,人口密度大,国际影响大,一旦发生岩溶塌陷灾害将会造成重大人员伤亡、财产损失及不可估量的损失。城市作为人口与经济的集中区,塌陷引发的风险最为突出。因此,从防灾减灾角度出发,探明城市地下岩溶发育分布规律,开展城市岩溶塌陷风险评价研究,是确保位于岩溶分布区城市地质安全的重要措施,不仅具有重要的学术价值,更具有重要的战略指导意义。本文以深圳某区30km2范围为研究区域,采用多学科综合的方法对城市岩溶的探测、发育分布、塌陷风险进行系统性的研究。综合分析了岩溶发育的地质环境背景,采用了适合城市岩溶的综合探测方法,揭示了地下岩溶的发育特征、空间分布规律、岩溶发育影响因素。在岩溶塌陷影响因素分析的基础上,进一步讨论研究区塌陷点岩溶塌陷的作用机理。基于城市环境的特殊性,将城市法定图则应用于风险评价,结合岩溶塌陷形成的基础地质条件、人为条件、承灾体易损性条件,综合使用多种评价方法,构建了研究区风险评价体系和模型,实现了研究区地面塌陷灾害的风险等级评价。论文取得的主要成果是:(1)综合研究了岩溶区地质环境背景区域可溶岩为石炭系下统石磴子组的大理岩、灰岩,主要分布在第四系冲洪积和残坡积下,少量位于石炭系测水组砂岩和花岗岩之下。地下水类型主要为岩溶裂隙水和松散岩类孔隙水。岩溶水的富水程度为中等,松散岩类孔隙水的富水程度为贫乏中等。区域地质构造复杂,东西南北存在多条断裂,将研究区与周围切割开。北西向碧岭断裂、北东向的汤坑断裂、北东向的坪山断裂、北西向的咸水湖断裂对区域岩溶发育影响最大。(2)采用了适合城市环境下的岩溶综合探测方法以前期科研成果为基础,遵循重点区域重点调查原则,以探明溶洞、土洞为目标,使用了高密度电法、地质雷达、弹性波CT、瞬变电磁这四种物探方法以及钻探手段对重点区域展开探测,共完成高密度电法测线48条,地质雷达测线14条,弹性波CT成像3对,瞬变电磁测线2条,地质钻孔共43个。经反复对比试验,综合考虑采用高密度电法对研究区岩溶进行探测,对重点区域实施钻探验证,搜集片区已有钻探数据对物探成果进行补充,探明了研究区溶洞的位置、规模、形态及填充,是一种快捷、经济、无损且较好地反映城市地下岩溶信息的有效方案。(3)揭示了城市岩溶发育特征、空间分布规律研究区岩溶主要是覆盖型岩溶,分布全区。岩溶发育形态以溶洞、土洞、溶蚀溶槽为主,岩溶总体上处于弱中等发育的水平。溶洞多为半填充、全填充溶洞,从西到东,溶洞填充物呈现出含砾粘性土粘性土、砂质粘性土细沙、中粗砂这一变化过程。大部分无填充,半填充溶洞处于发育期。溶洞剖面整体呈现出椭圆形或不规则面状。溶洞总体分布呈现出较大的不均匀性,溶洞发育以小中型溶洞为主,主要分布在研究区东部及西部,大型溶洞主要分布在东部,中部仅有少量大型、特大型溶洞分布。多层溶洞主要分布在硼茜矿区东侧,牛角龙区域和咸水湖区域,具有明显的区域特性。岩溶高程分布规律呈西高东低的趋势,与区域地势变化一致。岩溶垂向分布规律表现为随深度增加发育逐渐减弱,总体在1540m埋深范围比较发育,多层溶洞发育深度较浅。随着埋深的增加,小型、中型溶洞比例逐渐降低,而大型特大型溶洞比例逐渐增加。反映在平面上岩溶发育深度规律为西部发育较浅,中部发育最深,东部发育深度次之。岩溶发育主要受水文条件、地形地貌、地质构造、岩性条件的影响。其中地质构造起主导作用,区域内存在多条断裂构造,在丰富的的地表水系、地下水补给作用下,不仅为地下岩溶发育提供了良好条件,同时也控制了岩溶发育方向。(4)研究了岩溶地面塌陷成因与机理分析得出研究区岩溶塌陷主要受岩溶发育、岩性、盖层条件影响,并存在大气降水、地下水位波动、人类抽排地下水等自然和人为因素的影响。研究了研究区塌陷点受地表水下渗、地下水下降的致塌机理。对咸水湖塌陷点的降雨下渗致塌过程进行了模拟验证,在覆盖层较薄的岩溶地区,在降雨或积水影响下,当上部土体达到饱和或有一定深度的降水,土体重度增加,可能发生岩溶地面塌陷。(5)构建了城市岩溶地面塌陷风险评价体系基于层次分析法、敏感因子分析、专家决策等多种方法,主要考虑了岩溶发育程度、地下水位变幅、岩溶发育深度这三种基础因子对塌陷的影响,重点考虑到城市岩溶塌陷受人类活动强度这一人为因素的影响,将城市法定图则纳入评价计算,建立了岩溶地面塌陷风险评价模型。根据风险度评价数学模型进行风险性计算,对研究区进行了岩溶塌陷的风险评价,将研究区划分为高、中、低、无四个风险等级,其中岩溶塌陷的高风险区,面积为2.53km2;中等风险区面积为6.5km2,低风险区面积约为4.74km2。无风险区为研究区内非碳酸盐岩分布区,面积约为15.44km2。
张世新[9](2019)在《西成矿田隐伏铅锌矿床找矿模型及成矿预测研究》文中研究指明西成矿田是我国重要的铅锌等有色金属矿集区,位于秦岭泥盆系铅锌成矿带的西部,往西可延伸到宕昌代家庄一带,向东过两当与凤太铅锌矿田相接,其北以黄褚关断裂为界,南以人土山-江洛断裂为界,夹持在商丹缝合带、勉略缝合带之间。论文在典型矿床解剖的基础上,以成矿系统理论为指导,以成矿建造与构造-热液叠加改造与铅锌成矿关系为切入点,以矿床定位规律和找矿模型总结为目的,以铅锌成矿预测为目标,从宏观与微观两个角度研究了西成矿田与铅锌成矿有关的泥盆系沉积盆地构造动力学背景、盆-山演化过程中沉积建造、改造及岩浆活动对铅锌成矿的控制,总结了铅锌区域及矿床成矿地质条件和控矿因素,构建了区域成矿模型及以矿体定位规律为基础的矿区综合找矿模型,并结合地球物理和地球化学资料开展了深部隐伏铅锌矿床的成矿预测研究。取得了以下主要成果和认识:1、在系统研究区内铅锌矿床基础上,系统解剖郭家沟、洛坝、水贯子3个典型铅锌矿床,总结了区内铅锌矿成矿特征。区内铅锌矿床矿体呈层状、似层状、鞍状等主要产于泥盆系安家岔组、西汉水组地层中,少数产在泥盆系吴家山群、洞山组中。以厂坝-李家沟矿床为代表,矿体主要产在以泥质岩、细粒碎屑岩为主夹薄层碳酸盐岩建造的碎屑岩建造中,保存典型的沉积组构,代表同生喷流沉积矿床(SEDEX),主要分布在厂坝-向阳山一带的矿田北带。以毕家山、洛坝、郭家沟等为代表,矿体主要产在灰岩与千枚岩岩相界面的热水硅质岩中以及界面附近的千枚岩中灰岩透镜体及厚层灰岩一侧,显示明显后生成矿特征。矿床总体受泥盆系层位控制,但不同程度受到了变质、变形和后期热液叠加成矿改造,属于层控铅锌矿床。2、通过对赋矿硅质岩地球化学示踪,识别出了硅质岩为泥盆系地层中同生沉积的热水沉积岩,指示了同生沉积成岩期存在热液喷流沉积活动。基于矿石中代表后生热液活动脉状矿物的流体包裹体冷热台观察及均一温度、冰点及盐度计算,成矿流体总体为中-低温、中低盐度、低密度、中等压力、酸性、弱氧化性的Ca2+(Mg2+、Na+)-SO42-(Cl-)流体体系。流体包裹体氢氧同位素研究指示后期成矿热液主要来自岩浆水与大气水的混合,以前者为主。矿石硫、铅同位素研究表明,成矿元素主要来自下伏基底碧口群、李子园群及赋矿围岩泥盆系。硫同位素具有明显富重硫特征,矿石硫主要来源自地层中的海相硫酸盐,通过TSR反应形成还原硫,并与金属元素结合形成硫化物而沉淀。矿石热液碳酸盐矿物的C、O同位素组成,指示热液碳酸盐为地层灰岩溶溶解、沉淀形成,具有原地或近原地“就地取材”特点,这种化学反应过程不仅有利于成矿热液的运移,也有效改变着流体性质,对后期成矿意义重大。矿石碳酸盐矿物Sr同位素比值明显高于同时代印支期花岗岩初始Sr同位素比值,而与地层灰岩Sr比值范围重叠,同样指示热液溶解、就地取材的特征。综合以上研究,将西成铅锌矿床归为热水喷流沉积-岩浆热液叠加改造型矿床。3、对西成矿田及外围开展了碎屑锆石U-Pb定年,泥盆纪不同地层中碎屑锆石U-Pb年龄谱系均发育450Ma左右的年龄峰,而南秦岭志留系缺少此年龄峰值,指示南秦岭在志留纪到泥盆纪之间,碎屑物源发生了根本的变化,即志留系碎屑物源缺少早古生代岩浆锆石组分,指示此时北秦岭尚未作为碎屑物源的供给者,而到泥盆纪时大量北秦岭早古生代岩浆锆石出现在泥盆系中,指示此时分隔南、北秦岭之间的商丹洋已经闭合,北秦岭地体已经成为泥盆系碎屑源区。因此推断商丹洋盆闭合应在白龙江群沉积之后,泥盆系沉积之前或同时,不晚于泥盆纪。基于对碎屑锆石U-Pb定年及碎屑源区示踪,结合前人对本区沉积构造古地理研究成果,推断赋矿地层泥盆系西汉水群沉积之时,盆地应属于碰撞后同造山阶段的前陆盆地,而非伸展性质的裂陷盆地。如若前人提出泥盆纪为伸展盆地构造背景,则因深水盆地(舒家坝群为代表)阻隔,北秦岭碎屑物质不可能越过深水盆地到达南侧的浅水区域(西汉水群为代表),所以将西汉水群视为泥盆系前陆盆地前缘部分的沉积较为合理。与盆地有关的喷流沉积成矿系统可能并不像前人认为的是断陷盆地同生断裂控制流体对流成矿系统,而可能是受同造山挤压构造体制控制前陆盆地流体成矿系统。据此,我们推断吴家山隆起一带是早期同生盆地流体成矿的有利地区。4、基于矿区矿床定位规律及典型矿床解剖和成矿控制因素分析,认为泥盆纪沉积盆地从志留纪被动陆缘伸展盆地,转化为挤压构造背景下的前陆盆地,它控制了区内早期喷流沉积的层状铅锌矿体的产出,矿体直接产于碳酸盐岩与碎屑岩界面以及局部伸展地段,在印支期造山过程中,原有矿体受到变质变形和岩浆活动不同程度改造影响,在褶皱转折端、层间虚脱部分和岩体附近进一步叠加成矿,在此基础上构建了“层位(热水硅质岩)+界面+圈闭构造”的矿区尺度的找矿模型。5、基于GIS技术,利用空间分析功能,提取了有利的找矿地质信息,建立了以综合找矿标志为证据层的证据权模型,并通过对研究区已知铅锌矿床符合度验算(大于90%)和成矿信息预测,在区内圈出一级找矿远景区5个,二级找矿远景区6个,三级找矿远景区5个;6、在郭家沟矿区开展了矿体定位预测和钻探工程验证,找矿取得了重大突破。基于对矿区“界面控矿”和“褶皱转折端”的矿体定位规律的总结,利用EH4电磁测深技术圈定了矿区内碳酸盐岩与碎屑岩的岩性界面形态,在南北两边各识别出一个近东西走向的背斜,并在褶皱转折端部位布置钻孔进行了钻探验证,在垂深350米以下发现了郭家沟隐伏铅锌矿体,找矿取得重大突破。目前,该矿床以控制Pb+Zn金属量超过300万吨,银金属量超过1000吨;
睢瑜[10](2019)在《华南地区埃迪卡拉纪陡山沱组旋回地层学研究》文中认为埃迪卡拉纪(635-541 Ma)是地球环境变化和生物演替的重要阶段之一,陡山沱组的沉积时间几乎占据整个埃迪卡拉纪持续时间的90%,陡山沱组地层可以分为四个岩性段,在此期间发生了三次显着的碳同位素负偏移事件(EN1、EN2、EN3),其中EN3(Shuram/Wonoka)跨越陡三段上部直至整个陡四段沉积结束,这也是目前整个地质历史时期记录的最强烈且持续时间最长的碳同位素负偏移事件。了解这些事件的发生时间和持续时间及其与生物演化的关系,探讨碳同位素偏移、Gaskiers冰期和埃迪卡拉生物群的起源等事件的驱动机制,是近些年来地球系统科学研究中的一个热点科学问题。目前,由于陡山沱组缺乏高精度的地质年代标尺,导致对这些地质、生物及极端气候事件的演化过程还存在很多争议。我们以天文轨道理论为指导,以华南宜昌地区九龙湾剖面和泗溪剖面为研究对象,通过对地球化学元素含量及磁化率数据作为古气候替代指标对陡山沱组进行旋回地层学研究,建立了连续的高分辨率的天文年代标尺,基于Condon等人报道的陡山沱组发育的三层火山灰同位素绝对年龄数据(635.2±0.6 Ma、632.5±0.5 Ma以及551.1±0.7 Ma)作为绝对年龄控制点,建立了连续的长达50 Myr的天文年代标尺,为埃迪卡拉纪的极端气候变化事件和生物演化提供了精确的年代约束,在此基础上,进一步探讨这些事件发生及其演变的天文轨道驱动因素,有助于全面了解该地区的地质演化史和全球碳循环变化过程。本文在研究过程中获得以下四点新认识:⑴利用因子分析和层次聚类等方法,对岩石元素含量变化和磁化率数据进行对比分析,发现磁化率、钛和钙元素及铷锶比值等不同古气候替代性指标所指示的古气候意义不同。针对泗溪剖面陡山沱组中部地层(21.1 m)的化学元素含量和磁化率数据序列,利用因子分析和层次聚类等数学统计方法将磁化率(MS)、铁(Fe)、锆(Zr)、钛(Ti)、钾(K)、钙(Ca)和锰(Mn)及铷锶比(Rb/Sr)这8种古气候替代性指标数据序列分为三类Factor 1、Factor 2和Factor 3,对比分析发现Factor 1包括Fe、Zr、Ti、K和Rb/Sr指示了陆源碎屑的输入,这些地球化学元素或者比率可以作为陆源沉积物的替代性指标来重建古气候的变化过程;Factor 2包括Ca与Mn指示了生物成因/古生产力替代指标来重建古气候变化过程;Factor 3是指MS可以间接指示陆源碎屑的输入。这为旋回地层学研究如何选取合理的古气候替代指标提供了保障。⑵通过对九龙湾剖面陡山沱组下部22.3 m的Ca元素和Fe/Ti指标序列进行旋回分析,建立了陡一段和陡二段下部连续的高分辨率的天文年代标尺。通过对华南地区九龙湾剖面陡山沱组下部地层22.3 m的Ca元素与Fe/Ti作为古气候替代指标进行旋回分析,结合野外露头观察,利用估算的陡山沱组平均沉积速率1.83 m/Myr,推算出这个0.9 m的沉积旋回应该对应于405-kyr的长偏心率旋回周期,识别出27个较为显着的长偏心率周期的沉积旋回,然后利用最为稳定的405-kyr长偏心率周期对Ca和Fe/Ti数据序列进行天文调谐,建立了长达11.16Myr的高分辨率的浮动天文年代标尺,推算出陡一段即碳同位素负偏移事件EN1的沉积持续时间约为1.6 Myr。结合陡一段与陡二段界线附近的火山灰层U-Pb年龄635.2±0.6 Ma,进而计算出陡山沱组底部的界线年龄为636.8±0.7 Ma,同时发现碳氧同位素变化具有2 Myr旋回周期的演化规律。⑶通过对九龙湾剖面陡山沱组中部和上部地层进行旋回地层学分析,建立了长29.7 Myr连续高分辨率的天文年代标尺,估算出EN3事件的精确持续时间。通过对九龙湾剖面陡山沱组中部和上部84.9 m的地层中Fe元素数据序列进行旋回地层分析,根据前面估算的陡山沱组下部地层的平均沉积速率2 m/Myr和功率谱特征,识别出显着的偏心率周期(405-kyr,135-100 kyr),斜率周期(35-25 kyr)和岁差周期(19-16 kyr),一共识别出73个405-kyr长偏心率周期的沉积旋回。利用405-kyr的长偏心率周期对Fe元素的深度域序列进行天文调谐,建立了长达29.7Myr的连续的高分辨率的天文年代标尺,并进一步计算出陡四段即黑色页岩段的持续时间为7.5±0.1 Myr,EN3(Shuram/Wonoka)的持续时间为20 Myr。结合陡山沱组顶部附近的火山灰层中U-Pb年龄为551.1±0.7 Ma,推算出陡四段底部的年龄为558.6±0.8 Ma,陡二段/陡三段的界线年龄为579.3±0.8 Ma,碳同位素正偏移事件EP2和碳同位素负偏移事件EN3的起始时间分别为578.1±0.8 Ma和571.1±0.8 Ma,这两次事件发生的时间均晚于581 Ma出现的Gaskiers冰期事件。这一研究结果为埃迪卡拉纪陡山沱组地层的内部精细划分提供了重要的时间约束。⑷泗溪剖面陡山沱组中部地层天文年代标尺的建立通过对泗溪剖面陡山沱组中部地层(22.1 m)的MS和Fe元素序列进行旋回分析,识别出21个405-kyr长偏心率周期旋回,建立了长8.46 Myr连续的高分辨率的浮动天文年代标尺。借用九龙湾剖面陡三段/陡二段的界线年龄579.3±0.8 Ma作为年龄“锚点”,重建了584.9-576.4Ma的绝对天文年代标尺,进而计算出第四次碳同位素负偏移事件SN4持续时间为5.3 Myr(584.6-579.3 Ma)。
二、碳酸盐岩地层的岩性比率预测方法(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、碳酸盐岩地层的岩性比率预测方法(论文提纲范文)
(1)基于机器学习的三维成矿预测研究 ——以赣东北朱溪钨矿为例(论文提纲范文)
摘要 |
Abstract |
1 绪论 |
1.1 选题背景及研究意义 |
1.1.1 选题背景 |
1.1.2 研究意义 |
1.2 基于机器学习的成矿预测研究现状及存在问题 |
1.2.1 神经网络 |
1.2.2 支持向量机 |
1.2.3 随机森林 |
1.2.4 多方法组合 |
1.2.5 二维向三维发展存在的问题 |
1.3 朱溪及周缘研究现状及存在问题 |
1.4 研究内容与技术路线 |
1.4.1 主要研究内容 |
1.4.2 技术路线 |
1.5 主要创新点 |
1.6 章节安排 |
2 朱溪外围地质背景与地球物理地球化学特征 |
2.1 地质背景 |
2.1.1 地层 |
2.1.2 岩浆岩 |
2.1.2.1 侵入岩 |
2.1.2.2 火山岩 |
2.1.3 构造 |
2.1.4 成矿特征 |
2.2 地球物理特征 |
2.2.1 重力场特征 |
2.2.2 磁场特征 |
2.3 物性特征 |
2.3.1 密度特征 |
2.3.2 磁性特征 |
2.4 地球化学特征 |
2.4.1 土壤异常特征 |
2.4.2 水系沉积物异常特征 |
2.5 本章小结 |
3 四种实现成矿预测的机器学习算法原理 |
3.1 K近邻 |
3.2 BP神经网络 |
3.3 支持向量机 |
3.4 随机森林 |
3.5 本章小结 |
4 朱溪外围三维物性反演与三维地质建模 |
4.1 三维物性反演 |
4.1.1 重磁三维反演 |
4.1.2 大地电磁和天然地震三维反演 |
4.1.3 三维反演结果分析 |
4.2 三维地质建模 |
4.3 本章小结 |
5 基于机器学习的朱溪外围三维成矿预测 |
5.1 数据标准化 |
5.2 样本提取 |
5.3 样本扩充 |
5.4 模型训练及性能评价 |
5.4.1 样本拆分 |
5.4.2 训练参数选取 |
5.4.3 混淆矩阵评价分类模型性能 |
5.4.4 ROC曲线评价回归模型性能 |
5.5 三维成矿预测结果 |
5.5.1 分类预测结果 |
5.5.2 回归预测结果 |
5.6 多算法融合模型 |
5.6.1 均等权重融合模型 |
5.6.2 加权融合模型 |
5.7 本章小结 |
6 朱溪外围成矿远景区综合分析 |
6.1 预测结果切片分析 |
6.2 远景区圈定 |
6.3 三维预测与二维预测结果对比 |
6.4 远景区与地面断裂的关系 |
6.5 远景区与花岗岩接触关系 |
6.6 远景区物理属性及地表响应分析 |
6.7 本章小结 |
7 结论与建议 |
7.1 主要结论 |
7.2 存在不足与建议 |
7.2.1 存在不足 |
7.2.2 进一步研究建议 |
致谢 |
攻读博士学位期间取得的科研成果 |
参考文献 |
(2)淮南煤田奥陶系古岩溶成因机理及预测研究(论文提纲范文)
摘要 |
Abstract |
1 绪论 |
1.1 研究目的与意义 |
1.2 国内外研究现状及存在问题 |
1.2.1 古岩溶 |
1.2.2 古岩溶形成期次及其识别方法研究现状 |
1.2.3 古岩溶分布规律与控制因素研究现状 |
1.2.4 古岩溶识别与预测研究现状 |
1.2.5 华北煤田古岩溶研究现状 |
1.2.6 淮南煤田岩溶研究现状 |
1.2.7 存在的问题与不足 |
1.3 研究内容、方法与技术路线 |
1.3.1 研究内容 |
1.3.2 研究方法 |
1.3.3 技术路线 |
1.4 论文工作量 |
2 研究区地质及水文地质概况 |
2.1 研究区概况 |
2.2 地层与构造 |
2.2.1 地层 |
2.2.2 构造 |
2.3 含水层系统 |
2.3.1 新生界松散孔隙含(隔)水层系统 |
2.3.2 基岩裂隙-溶隙含水层系统 |
3 奥陶系古岩溶发育特征 |
3.1 奥陶系地层与岩性特征 |
3.1.1 地层厚度及结构 |
3.1.2 岩性特征 |
3.1.3 岩石矿物特征 |
3.2 奥陶系古岩溶发育类型及特征 |
3.2.1 溶孔 |
3.2.2 裂缝 |
3.2.3 溶洞 |
3.2.4 岩溶陷落柱 |
3.3 奥陶系古岩溶充填特征 |
3.3.1 充填物类型 |
3.3.2 充填特征 |
3.4 奥陶系古岩溶分布特征 |
3.4.1 平面分布特征 |
3.4.2 垂向分布特征 |
3.5 本章小结 |
4 奥陶系古岩溶形成期次确定 |
4.1 奥陶系古岩溶形成背景 |
4.1.1 奥陶系地层沉积背景 |
4.1.2 区域构造演化背景 |
4.1.3 岩浆活动 |
4.2 古岩溶地球化学特征分析 |
4.2.1 样品采集与测试 |
4.2.2 碳和氧同位素特征 |
4.2.3 微量元素特征 |
4.3 古岩溶充填物形成环境分析 |
4.3.1 盐度-温度-深度计算 |
4.3.2 形成环境分析 |
4.4 奥陶系古岩溶形成期次确定 |
4.5 本章小结 |
5 不同期次古岩溶形成环境与发育模式 |
5.1 沉积岩溶 |
5.1.1 地质背景 |
5.1.2 古气候 |
5.1.3 古水文 |
5.1.4 沉积岩溶发育模式 |
5.2 风化壳岩溶 |
5.2.1 地质背景 |
5.2.2 古气候 |
5.2.3 古地貌 |
5.2.4 古水文 |
5.2.5 风化壳岩溶发育模式 |
5.3 压释水岩溶 |
5.3.1 地质背景 |
5.3.2 古水文地质条件 |
5.3.3 压释水岩溶发育模式 |
5.4 热液岩溶 |
5.4.1 构造运动 |
5.4.2 岩浆活动 |
5.4.3 热液岩溶发育模式 |
5.5 混合岩溶 |
5.5.1 地质背景 |
5.5.2 古气候 |
5.5.3 古地貌 |
5.5.4 古水文 |
5.5.5 混合岩溶发育模式 |
5.6 奥陶系古岩溶演化模式 |
5.7 本章小结 |
6 奥陶系古岩溶发育控制因素 |
6.1 地层岩性与结构 |
6.1.1 碳酸盐岩岩性 |
6.1.2 岩层结构 |
6.2 侵蚀性流体 |
6.2.1 大气淡水 |
6.2.2 地层压释水 |
6.2.3 热液流体 |
6.2.4 混合流体 |
6.3 断裂构造 |
6.3.1 构造分期 |
6.3.2 古构造应力场数值模拟 |
6.3.3 模拟结果分析 |
6.3.4 多期构造运动对古岩溶发育的控制作用 |
6.4 古地貌与古水文 |
6.4.1 奥陶系风化壳古地貌与古水文 |
6.4.2 基岩风化面古地貌与古水文 |
6.5 岩浆活动 |
6.6 岩溶作用时间 |
6.7 本章小结 |
7 淮南煤田岩溶陷落柱形成机理探讨 |
7.1 基底溶洞形成过程分析 |
7.1.1 溶洞形成机理 |
7.1.2 溶洞形成过程数值模拟 |
7.2 顶板塌陷过程分析 |
7.2.1 顶板塌陷力学机制 |
7.2.2 顶板塌陷数值模拟 |
7.3 岩溶陷落柱形成机理探讨 |
7.4 本章小结 |
8 淮南煤田奥陶系古岩溶发育程度预测 |
8.1 预测方法 |
8.1.1 层次分析法 |
8.1.2 基于GIS的层次分析法 |
8.2 预测模型建立 |
8.2.1 评价指标体系建立 |
8.2.2 评价指标权重确定 |
8.2.3 评价指标归一化处理 |
8.2.4 综合得分模型建立 |
8.3 预测结果分析 |
8.4 结果验证 |
8.5 本章小结 |
9 结论与展望 |
9.1 结论 |
9.2 主要创新点 |
9.3 展望 |
参考文献 |
致谢 |
作者简介及读研期间主要科研成果 |
(3)云南省铅锌矿产资源保障程度与勘查布局研究(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
1.1 选题依据及研究意义 |
1.1.1 研究背景 |
1.1.2 选题目的及意义 |
1.2 国内外研究现状 |
1.2.1 铅锌矿产资源保障程度研究现状 |
1.2.2 铅锌矿产资源勘查开发研究现状 |
1.2.3 铅锌矿产资源地质勘查中存在的主要问题 |
1.3 研究内容、研究方法与研究路线 |
1.3.1 研究内容及研究方法 |
1.3.2 研究思路与技术路线 |
1.3.3 论文主要成果 |
第二章 国内外铅锌矿产资源概况 |
2.1 世界铅锌矿产资源概况 |
2.2 国内铅锌矿产资源概况 |
2.3 云南省铅锌矿产资源概况 |
2.3.1 自然概况 |
2.3.2 铅锌矿产资源基本概况 |
2.3.3 铅锌矿产资源储量概况 |
2.4 铅锌矿产资源需求预测 |
第三章 云南省主要铅锌矿床类型及成矿特征 |
3.1 云南省主要铅锌矿分布特征 |
3.2 云南省主要铅锌矿床类型及成矿特征 |
3.2.1 碳酸盐岩型铅锌矿 |
3.2.2 砂砾岩型铅锌矿 |
3.2.3 火山岩型铅锌矿 |
3.2.4 矽卡岩型铅锌矿 |
第四章 云南省铅锌矿产资源保障程度 |
4.1 云南省铅矿产资源保障程度 |
4.2 云南省锌矿产资源保障程度 |
4.3 铅锌矿产资源保障能力分析 |
第五章 云南省铅锌矿产资源勘查布局 |
5.1 矿业环境分析 |
5.1.1 矿产资源整合 |
5.1.2 云南地缘经济地位优势 |
5.2 铅锌矿产资源勘查布局 |
5.2.1 加大铅锌资源勘查力度意义重大 |
5.2.2 勘查布局原则 |
5.2.3 勘查布局 |
第六章 结论与不足 |
6.1 结论 |
6.2 不足 |
致谢 |
参考文献 |
附录A 攻读硕士期间参加的科研项目 |
附录B 攻读硕士期间参加的学术会议 |
(4)叠合盆地深层碳酸盐岩储层孔渗演化及油藏赋存下限(论文提纲范文)
摘要 |
ABSTRACT |
创新点 |
第1章 绪论 |
1.1 题目来源 |
1.2 选题目的与意义 |
1.3 研究现状与存在的主要问题 |
1.3.1 研究现状 |
1.3.2 存在的科学问题 |
1.4 主要研究内容与技术路线 |
1.4.1 主要研究内容 |
1.4.2 技术路线 |
1.5 论文主要工作量及主要成果 |
1.5.1 资料收集与整理 |
1.5.2 样品采集与分析测试 |
1.5.3 图件编制与文章发表 |
1.5.4 论文取得的主要认识 |
第2章 全球碳酸盐岩储层孔渗特征 |
2.1 全球碳酸盐岩储层孔渗随深度变化特征 |
2.1.1 孔隙度-深度 |
2.1.2 渗透率-深度 |
2.1.3 孔隙度-渗透率 |
2.2 俄罗斯Volga-Urals盆地碳酸盐岩储层孔渗随深度变化特征 |
2.2.1 孔隙度-深度 |
2.2.2 渗透率-深度 |
2.2.3 孔隙度-渗透率 |
2.3 中国四川盆地下古生界碳酸盐储层孔渗随深度变化特征 |
2.3.1 孔隙度-深度 |
2.3.2 渗透率-深度 |
2.3.3 孔隙度-渗透率 |
2.4 本章小结 |
第3章 塔里木盆地区域地质概况及深层碳酸盐岩油气地质特征 |
3.1 区域地质概况 |
3.1.1 区域地理位置 |
3.1.2 区域构造演化 |
3.1.3 区域地层特征 |
3.1.4 油气分布特征 |
3.2 塔里木盆地深层碳酸盐岩油气地质特征 |
3.2.1 盆地经历多旋回构造运动 |
3.2.2 烃源岩热演化程度相对较高 |
3.2.3 储层类型多样且非均质性强 |
3.2.4 油气藏储层年代老且埋深大 |
3.3 本章小结 |
第4章 塔里木盆地深层碳酸盐岩储层孔渗演化及油藏赋存下限 |
4.1 塔中下奥陶统深层碳酸盐岩储层物性随埋深变化特征 |
4.1.1 碳酸盐岩储层物性随埋深变化数值模拟模型 |
4.1.2 塔中下奥陶统深层碳酸盐岩储层物性随埋深变化模拟 |
4.1.3 模拟结果验证 |
4.1.4 碳酸盐岩储层物性变化影响因素 |
4.2 塔中深层碳酸盐岩储层控油特征及油藏赋存下限临界条件 |
4.2.1 塔中下奥陶统储层控油特征 |
4.2.2 塔中下奥陶统储层油藏赋存下限临界条件 |
4.3 本章小结 |
第5章 塔里木盆地碳酸盐岩油藏赋存下限成因机理及深度下限 |
5.1 塔里木盆地碳酸盐岩油藏赋存下限成因机理 |
5.1.1 储层内外毛细管力差随埋深增大而减小 |
5.1.2 储层之外油气来源随埋深增大而枯竭 |
5.2 塔中下奥陶统碳酸盐岩油藏赋存下限临界条件与深度下限 |
5.2.1 油藏赋存下限临界条件与深度下限关系 |
5.2.2 塔中下奥陶统碳酸盐岩油藏赋存下限综合表征 |
5.3 本章小结 |
第6章 结论 |
参考文献 |
致谢 |
个人简历、在学期间发表的学术论文及研究成果 |
学位论文数据集 |
(5)青海东昆仑成矿带东段地球化学数据处理方法及找矿靶区圈定(论文提纲范文)
摘要 |
ABSTRACT |
第一章 绪论 |
1.1 选题背景及意义 |
1.1.1 选题背景 |
1.1.2 选题意义 |
1.2 研究区范围及交通地理概况 |
1.3 勘查地球化学的研究现状 |
1.4 化探信息提取 |
1.4.1 背景和异常的概念 |
1.4.2 背景和异常确定方法的分类 |
1.4.3 异常下限的确定 |
1.5 化探数据处理的两个进展 |
1.5.1 稳健分析 |
1.5.2 成分数据 |
1.6 东昆仑成矿带东段地球化学研究进展及存在问题 |
1.6.1 地球化学研究进展 |
1.6.2 存在问题 |
1.7 科学问题、研究思路、研究内容及完成工作量 |
1.7.1 科学问题 |
1.7.2 研究思路 |
1.7.3 研究内容 |
1.7.4 完成的主要工作量 |
1.8 两点说明 |
第二章 区域成矿地质背景 |
2.1 区域地质 |
2.1.1 区域大地构造背景 |
2.1.2 区域地层 |
2.1.3 研究区主要构造及构造单元划分 |
2.1.4 岩浆岩 |
2.2 区域地球物理特征 |
2.2.1 区域重力场特征 |
2.2.2 区域磁场特征 |
2.3 区域矿产特征及成矿区带划分 |
2.3.1 区域矿产特征 |
2.3.2 成矿区带划分及各带成矿规律 |
2.4 小结 |
第三章 区域地球化学特征 |
3.1 区域地球化学总体特征 |
3.1.1 元素分布特征 |
3.1.2 元素富集离散特征 |
3.1.3 元素的共生组合特征 |
3.2 元素的时空分布规律 |
3.2.1 元素的时间分布规律 |
3.2.2 元素的空间分布规律 |
3.3 元素在各地质子区中的具体特征 |
3.3.1 昆北子区元素特征 |
3.3.2 昆中子区元素特征 |
3.3.3 昆南子区元素特征 |
3.3.4 北巴子区元素特征 |
3.4 小结 |
第四章 数据处理及异常识别 |
4.1 数据处理和异常识别的原则及影响因素 |
4.1.1 影响区域地球化学背景的因素 |
4.2 单元素数据处理及异常圈定 |
4.2.1 ILR变换后数据因子分区标准化方法 |
4.2.2 Aitchison距离圈定地球化学异常的方法 |
4.3 多元异常圈定 |
4.3.1 主成分分析法 |
4.3.2 马氏距离法 |
4.4 元素含量的空间变化率 |
4.4.1 具体做法 |
4.4.2 主要成矿元素的空间变化率 |
4.5 小结 |
第五章 基于地球化学数据的靶区圈定 |
5.1 思路 |
5.2. 具体做法 |
5.2.1 选择地球化学参数 |
5.2.2 确定各地球化学参数的权重系数 |
5.2.3 各地球化学参数赋值及单元格划分 |
5.3 3种类型的找矿信息量及靶区圈定 |
5.3.1 与基性岩成矿有关的找矿靶区 |
5.3.2 与中酸性岩成矿有关的找矿靶区 |
5.3.3 与热液型金矿有关的找矿靶区 |
5.4 典型成矿远景区评述 |
5.4.1 小干沟-西藏大沟成矿远景区(Y_1) |
5.4.2 五龙沟一带成矿远景区(Y_3) |
5.4.3 诺木洪郭勒一波洛斯太一带成矿远景区(Y_5) |
5.4.4 大厂一扎陵湖一带成矿远景区(Y_7) |
5.4.5 东山根一沟里一带成矿远景区(Y_8) |
5.4.6 孟可特一冬给措纳湖一带成矿远景区(Y_(10)) |
5.4.7 Y_1、Y_5、Y_7、Y_8四个远景区内金矿的找矿潜力分析 |
5.5 远景区找矿发现 |
5.6 小结 |
第六章 结束语 |
6.1 主要结论及创新点 |
6.1.1 主要结论 |
6.1.2 创新点 |
6.2 存在问题 |
致谢 |
参考文献 |
附录 |
(6)嘉陵江流域(广元段)地质地貌特征与土地利用演变研究(论文提纲范文)
摘要 |
Abstract |
第1章 引言 |
1.1 选题背景及意义 |
1.2 国内外研究进展 |
1.2.1 流域地貌发育和形态特征量化研究 |
1.2.2 流域地质地貌特征和土地利用研究 |
1.3 论文的主要创新点 |
1.4 研究内容和技术路线 |
1.4.1 研究内容 |
1.4.2 技术路线 |
第2章 研究区概况 |
2.1 研究区范围 |
2.2 地质和地貌 |
2.2.1 区域地质背景 |
2.2.2 地貌发展简史 |
2.2.3 成土母质类型 |
2.2.4 地貌类型分析 |
第3章 嘉陵江流域(广元段)地质地貌特征分析 |
3.1 流域地貌发育分析方法 |
3.2 地质地貌特征参数提取方法 |
3.2.1 数据处理 |
3.2.2 地貌特征参数的计算 |
3.3 流域地貌发育阶段分析 |
3.3.1 流域地貌发育定量分析 |
3.3.2 流域地貌发育阶段空间分布特征 |
3.4 流域地貌发育与现代地质地貌特征分析 |
3.4.1 地层岩性特征 |
3.4.2 水系分布特征 |
3.4.3 流域地貌特征 |
3.5 小结 |
第4章 流域地质地貌特征与土地利用变化分析 |
4.1 土地利用信息遥感识别和提取 |
4.1.1 数据来源 |
4.1.2 数据预处理 |
4.2 土地利用变化分析方法 |
4.2.1 土地利用变化的分析方法 |
4.2.2 土地利用景观格局演变的分析方法 |
4.3 土地利用动态演变分析 |
4.3.1 土地利用动态变化分析 |
4.3.2 土地利用景观格局演变分析 |
4.4 流域地质地貌特征和土地利用变化关系 |
4.4.1 研究区土地利用变化和地质地貌特征分析 |
4.4.2 地貌发育老年期地质地貌特征和土地利用变化 |
4.4.3 地貌发育壮年(偏老)期地质地貌特征和土地利用变化 |
4.4.4 地貌发育壮年期地质地貌特征和土地利用变化 |
4.5 流域地貌发育不同阶段土地利用变化关系分析 |
4.5.1 流域地貌发育不同阶段土地利用变化特征分析 |
4.5.2 地貌发育不同阶段地质地貌特征和土地利用变化分析 |
4.6 小结 |
第5章 嘉陵江流域(广元段)土地利用变化影响因素及空间模拟分析 |
5.1 土地利用变化模型与方法 |
5.1.1 Logistic回归模型 |
5.1.2 Logistic回归模型估计 |
5.1.3 Logistic模型检验 |
5.1.4 模型拟合检验 |
5.2 LOGISTIC回归模型构建 |
5.2.1 影响因子选取原则 |
5.2.2 变量的选取 |
5.2.3 变量数据的收集和处理 |
5.3 LOGISTIC模型回归参数分析 |
5.3.1 林地变化的影响因素分析 |
5.3.2 耕地变化的影响因素分析 |
5.3.3 建设用地变化的影响因素分析 |
5.4 不同土地利用类型的转化概率空间模拟 |
5.4.1 模型预测能力检验 |
5.4.2 未来土地利用转化空间模拟 |
5.5 流域地貌发育不同阶段土地利用转化概率预测 |
5.6 嘉陵江流域(广元段)山地空间拓展边界划定建议 |
5.7 小结 |
结论 |
致谢 |
参考文献 |
攻读博士学位期间取得的学术成果 |
(7)云南建水县挣财洞铅锌矿区岩溶发育特征及1800m中段涌水量预测(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
1.1 选题依据及研究意义 |
1.2 国内外研究现状 |
1.2.1 岩溶问题的国内外研究现状 |
1.2.2 矿坑涌水量预测国内外研究现状 |
1.3 本次工作研究概况 |
1.4 研究内容及技术路线 |
1.4.1 研究内容 |
1.4.2 技术路线 |
第二章 区域地质条件 |
2.1 自然地理概况 |
2.1.1 交通位置 |
2.1.2 地形地貌 |
2.1.3 气象水文 |
2.2 区域地质概况 |
2.2.1 地层岩性 |
2.2.2 岩浆岩 |
2.2.3 地质构造 |
2.3 区域稳定性 |
2.3.1 温泉活动 |
2.3.2 地震活动 |
2.4 区域水文地质条件 |
2.4.1 含水层(组)类型及富水性 |
2.4.2 区域水文地质单元 |
第三章 矿区水文地质条件 |
3.1 矿区地质条件 |
3.1.1 地层岩性 |
3.1.2 矿区构造 |
3.2 矿区水文地质特征 |
3.2.1 含(隔)水层(组)特征 |
3.2.2 矿区断裂构造及水文地质特征 |
3.2.3 水文地质单元及其补给、径流、排泄条件 |
3.3 矿区地下水化学分析 |
3.4 矿床充水条件分析 |
3.4.1 矿床充水水源 |
3.4.2 矿床充水通道 |
3.4.3 矿床充水强度 |
3.4.4 矿区井巷水文地质条件分析 |
第四章 岩溶发育特征 |
4.1 岩溶发育特征 |
4.1.1 平面特征 |
4.1.2 垂向特征 |
4.2 岩溶发育控制因素 |
4.2.1 岩性因素 |
4.2.2 化学成分 |
4.2.3 溶蚀强度 |
4.2.4 构造因素 |
4.2.5 气候因素 |
4.2.6 地下水作用 |
第五章 水文地质参数 |
5.1 渗透系数 |
5.2 渗透张量 |
5.3 其他参数 |
第六章 涌水量计算与预测 |
6.1 大井法计算矿坑涌水量 |
6.1.1 计算公式 |
6.1.2 计算参数 |
6.2 水均衡法计算矿坑涌水量 |
6.2.1 计算遵循原则 |
6.2.2 计算公式及参数取值 |
6.3 数值法计算矿坑涌水量 |
6.3.1 水文地质概念模型 |
6.3.2 数学模型 |
6.3.3 模型边界条件与网格剖分 |
6.3.4 源汇项 |
6.3.5 渗透系数分区 |
6.3.6 模型识别 |
6.3.7 模型验证 |
6.3.8 结果输出 |
6.4 计算结果分析 |
6.5 1800m中段矿坑涌水量预测 |
第七章 结论与建议 |
7.1 结论 |
7.2 建议 |
致谢 |
参考文献 |
附录A 攻读期间发表的论文及参加的科研项目 |
(8)城市岩溶空间分布规律及塌陷风险评价研究 ——以深圳某区为例(论文提纲范文)
摘要 |
ABSTRACT |
1 绪论 |
1.1 研究目的和意义 |
1.2 国内外研究现状 |
1.2.1 岩溶发育特征 |
1.2.2 岩溶探测方法 |
1.2.3 岩溶塌陷风险评价 |
1.3 主要研究内容及创新点 |
1.3.1 研究内容 |
1.3.2 研究方法及技术路线 |
1.3.3 创新点 |
2 地质环境背景 |
2.1 气象水文特征 |
2.2 地形地貌特征 |
2.3 地层岩性特征 |
2.4 可溶岩分布特征 |
2.5 地质构造特征 |
2.6 水文地质特征 |
2.6.1 地下水类型及特征 |
2.6.2 地下水水位埋深特征 |
2.6.3 地下水补给、径流、排泄条件 |
2.6.4 地下水化学特征 |
2.6.5 地下水动态变化特征 |
3 城市岩溶发育特征及空间分布规律 |
3.1 城市岩溶探测 |
3.1.1 地球物理勘探 |
3.1.2 地质钻探 |
3.1.3 探测方法对比 |
3.2 岩溶发育特征分析 |
3.2.1 岩溶类型 |
3.2.2 岩溶形态特征 |
3.2.3 地下溶洞填充特征 |
3.2.4 岩溶发育程度 |
3.3 岩溶发育空间分布规律 |
3.3.1 岩溶发育的不均匀性 |
3.3.2 岩溶发育规模 |
3.3.3 岩溶发育深度 |
3.4 岩溶发育控制条件 |
3.4.1 水文条件 |
3.4.2 地形地貌条件 |
3.4.3 地质构造条件 |
3.4.4 岩性条件 |
4 城市岩溶地面塌陷机理研究 |
4.1 岩溶地面塌陷基本特征 |
4.2 岩溶地面塌陷成因分析 |
4.2.1 岩溶地面塌陷典型案例分析 |
4.2.2 岩溶地面塌陷成因 |
4.3 岩溶地面塌陷机理研究 |
4.3.1 地表水下渗致塌机理分析 |
4.3.2 地下水下降致塌机理分析 |
4.4 岩溶地面塌陷数值模拟分析 |
5 城市岩溶地面塌陷灾害风险评价 |
5.1 风险评价方法及研究思路 |
5.1.1 风险评价方法 |
5.1.2 塌陷风险评价思路 |
5.2 评价因子选择与评价模型构建 |
5.3 岩溶地面塌陷危险性评价 |
5.3.1 评价模型建立 |
5.3.2 评价条件层及因子层权重计算 |
5.3.3 判断矩阵评价因子权重计算 |
5.3.4 评价因子量值划分 |
5.3.5 危险性评价 |
5.4 岩溶地面塌陷易损性评价 |
5.4.1 评价模型建立 |
5.4.2 评价因子权重计算 |
5.4.3 易损性评价 |
5.5 岩溶地面塌陷风险评价 |
6 结论与展望 |
6.1 结论 |
6.2 展望 |
参考文献 |
附录 |
个人简历、在学期间取得的科研成果 |
致谢 |
(9)西成矿田隐伏铅锌矿床找矿模型及成矿预测研究(论文提纲范文)
作者简历 |
摘要 |
Abstract |
第一章 绪论 |
1.1 研究区交通位置及自然地理概况 |
1.2 选题依据及研究意义 |
1.3 国内外研究现状及存在的问题 |
1.3.1 沉积岩型Pb-Zn矿床 |
1.3.2 找矿模型及成矿预测 |
1.3.4 研究区研究现状 |
1.3.5 秦岭泥盆系铅锌矿床存在的问题 |
1.4 研究内容、思路及技术路线 |
1.4.1 研究内容 |
1.4.2 研究思路及技术路线 |
1.5 完成的主要实物工作量 |
第二章 西秦岭造山带地质组成及构造演化 |
2.1 造山带内部结构及构造演化 |
2.2 秦岭晚古生代沉积盆地性质 |
2.3 中生代岩浆活动与构造动力学环境 |
第三章 西成矿田地质地球物理和地球化学特征 |
3.1 赋矿地层 |
3.2 矿田构造 |
3.3 岩浆活动 |
3.4 变质特征 |
3.5 地球物理特征 |
3.6 化探异常特征 |
3.7 西成矿田矿床分布特征 |
第四章 西成矿田铅锌矿床地质特征 |
4.1 郭家沟铅锌矿床地质特征 |
4.1.1 赋矿层位 |
4.1.2 矿区构造 |
4.1.3 矿体特征 |
4.1.4 矿石特征 |
4.1.5 围岩蚀变 |
4.1.6 成矿期和成矿阶段 |
4.2 洛坝铅锌矿床 |
4.2.1 赋矿地层 |
4.2.2 矿区构造 |
4.2.3 矿体特征 |
4.2.4 矿石特征 |
4.2.5 围岩蚀变 |
4.2.6 成矿期和成矿阶段 |
4.3 水贯子铅锌矿床 |
4.3.1 赋矿地层 |
4.3.2 矿区构造 |
4.3.3 矿区岩浆岩 |
4.3.4 矿体特征 |
4.3.5 矿石特征 |
4.3.6 围岩蚀变 |
4.3.7 成矿期和成矿阶段 |
4.4 西成铅锌矿田铅锌成矿特征 |
第五章 西成矿田铅锌矿床成因及矿床类型 |
5.1 流体包裹体岩相学研究 |
5.1.1 测试方法与实验流程 |
5.1.2 郭家沟矿床岩相学特征与测试结果 |
5.1.3 洛坝矿床岩相学特征与测试结果 |
5.1.4 水贯子矿床岩相学特征与测试结果 |
5.1.5 成矿流体密度、压力估算 |
5.1.6 流体成分、fo2逸度以及p H、Eh值 |
5.2 矿床同位素地球化学特征 |
5.2.1 矿石硫同位素特征 |
5.2.2 矿石铅同位素特征 |
5.2.3 氢、氧同位素组成及成矿流体来源 |
5.2.4 热液碳酸盐矿物C、O、Sr同位素特征 |
5.3 赋矿硅质岩地球化学特征及成因 |
5.4 西成铅锌矿床成因及矿床类型 |
第六章 泥盆系碎屑锆石U-Pb定年及碎屑源区 |
6.1 样品及分析流程 |
6.2 泥盆系西汉水群碎屑沉积岩岩相学特征 |
6.2.1 安家岔组 |
6.2.2 西汉水组 |
6.2.3 洞山组 |
6.3 西汉水群变沉积岩岩石化学特征 |
6.4 泥盆系碎屑锆石U-Pb定年 |
6.4.1 安家岔组ZK772711 样品 |
6.4.2 安家岔组ZK232 样品 |
6.4.3 西汉水组样品B01 |
6.4.4 西汉水组B02 |
6.4.5 洞山组B03样品 |
6.5 西成矿田泥盆系碎屑锆石源区特征 |
6.5.1 安家岔组碎屑锆石源区 |
6.5.2 西汉水组碎屑锆石源区 |
6.5.3 洞山组碎屑锆石源区 |
6.6 西秦岭碎屑源区对比与泥盆纪盆地格局 |
6.6.1 商丹洋盆闭合时间 |
6.6.2 沉积盆地性质 |
第七章 西成铅锌矿床控矿因素与找矿模型 |
7.1 泥盆系沉积盆地对铅锌成矿控制 |
7.2 印支期岩浆活动与构造变形对成矿影响 |
7.3 界面控矿特点与矿区尺度的找矿模型 |
7.3.1 西成矿田界面控矿特点 |
7.3.2 矿区尺度铅锌找矿模型 |
第八章 基于GIS西成矿田铅锌成矿预测 |
8.1 地球物理场与矿床分布 |
8.2 地层-岩性含矿性 |
8.2.1 含矿地层分析 |
8.2.2 含矿岩性分析 |
8.3 构造及岩性接触带控矿作用 |
8.4 地质找矿标志量化提取 |
8.4.1 基于GIS的点元信息提取 |
8.4.2 面元信息提取 |
8.4.3 线元体信息提取及其意义 |
8.5 土壤化探异常特征及成矿预测 |
8.6 找矿标志 |
8.7 证据权模型与成矿预测 |
8.7.1 证据权模型与方法 |
8.7.2 证据权预测结果与评价 |
8.8 小结 |
第九章 郭家沟矿区矿体定位预测实践 |
9.1 物探方法选择及依据 |
9.1.1 电磁测深法 |
9.1.2 方法可行性 |
9.2 物探结果与钻探验证 |
9.2.1 EH4测深结果 |
9.2.2 钻探验证情况 |
第十章 结论 |
致谢 |
参考文献 |
图版 |
(10)华南地区埃迪卡拉纪陡山沱组旋回地层学研究(论文提纲范文)
个人简介 |
摘要 |
abstract |
第一章绪论 |
1.1 选题背景及意义 |
1.2 国内外研究进展及存在的问题 |
1.2.1 陡山沱组国内外研究进展 |
1.2.2 旋回地层学研究现状 |
1.2.3 目前研究中存在的主要问题 |
1.3 研究目标及主要内容 |
1.3.1 研究目标 |
1.3.2 研究内容 |
1.3.3 拟解决的关键问题 |
1.4 论文完成的工作量 |
第二章区域地质背景 |
2.1 研究区概况 |
2.2 区域综合年代地层框架 |
2.2.1 年代地层格架 |
2.2.2 同位素化学地层年代格架 |
2.2.3 生物地层格架 |
2.3 研究剖面 |
2.3.1 九龙湾剖面 |
2.3.2 泗溪剖面 |
第三章研究方法与材料 |
3.1 天文旋回理论 |
3.2 研究方法与数据采集 |
3.3 古气候替代指标的选取及指示意义 |
3.4 小结 |
第四章陡山沱组下部地层天文地质年代标尺的建立 |
4.1 引言 |
4.2 研究材料和方法 |
4.2.1 数据来源 |
4.2.2 古气候替代指标的选取 |
4.2.3 旋回地层分析方法 |
4.3 旋回分析结果 |
4.3.1 深度域的频谱分析 |
4.3.2 时间域的频谱分析 |
4.4 讨论 |
4.4.1 埃迪卡拉纪早期的天文地质年代标尺 |
4.4.2 埃迪卡拉纪早期沉积环境变化对地球轨道驱动的响应 |
4.4.3 全球碳循环变化对地球轨道驱动的响应 |
4.5 结论 |
第五章陡山沱组中上部地层的天文年代标尺:对碳同位素负偏移事件的时间约束 |
5.1 引言 |
5.2 旋回分析结果 |
5.2.1 深度域的频谱分析 |
5.2.2 建立陡山沱组中-上部的天文年代标尺 |
5.3 讨论 |
5.3.1 陡山沱组中上部地层的天文年代标尺 |
5.3.2 碳同位素负偏移事件EN3和正偏移事件EP2的持续时间 |
5.3.3 埃迪卡拉纪晚期地球轨道因素驱动沉积环境的变化 |
5.4 结论 |
第六章泗溪剖面陡山沱组天文年代标尺的建立 |
6.1 引言 |
6.2 旋回地层分析结果 |
6.2.1 深度域的频谱分析 |
6.2.2 利用长偏心率周期 405-kyr调谐的年代模型 |
6.3 讨论 |
6.3.1 陡山沱组中部地层的天文年代标尺 |
6.3.2 碳同位素负偏移事件的持续时间 |
6.3.3 陡山沱组中部地层沉积记录对地球轨道周期变化的响应 |
6.4 陡山沱组综合年代地层对比 |
6.5 结论 |
第七章结论与工作展望 |
7.1 主要结论 |
7.2 不足之处和未来工作展望 |
致谢 |
参考文献 |
四、碳酸盐岩地层的岩性比率预测方法(论文参考文献)
- [1]基于机器学习的三维成矿预测研究 ——以赣东北朱溪钨矿为例[D]. 付光明. 东华理工大学, 2021(02)
- [2]淮南煤田奥陶系古岩溶成因机理及预测研究[D]. 张海涛. 安徽理工大学, 2021
- [3]云南省铅锌矿产资源保障程度与勘查布局研究[D]. 周鑫. 昆明理工大学, 2021(01)
- [4]叠合盆地深层碳酸盐岩储层孔渗演化及油藏赋存下限[D]. 汪文洋. 中国石油大学(北京), 2020
- [5]青海东昆仑成矿带东段地球化学数据处理方法及找矿靶区圈定[D]. 耿国帅. 中国地质大学(北京), 2020(01)
- [6]嘉陵江流域(广元段)地质地貌特征与土地利用演变研究[D]. 闫丽丽. 成都理工大学, 2020(04)
- [7]云南建水县挣财洞铅锌矿区岩溶发育特征及1800m中段涌水量预测[D]. 台宁宁. 昆明理工大学, 2020(04)
- [8]城市岩溶空间分布规律及塌陷风险评价研究 ——以深圳某区为例[D]. 付宇. 华北水利水电大学, 2019(01)
- [9]西成矿田隐伏铅锌矿床找矿模型及成矿预测研究[D]. 张世新. 中国地质大学, 2019(02)
- [10]华南地区埃迪卡拉纪陡山沱组旋回地层学研究[D]. 睢瑜. 中国地质大学, 2019(02)